Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
BMC Med ; 22(1): 147, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561764

ABSTRACT

BACKGROUND: Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS: This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS: The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS: This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/genetics , Prospective Studies , Artificial Intelligence , Ultrasonography , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Neoplasms/surgery , Retrospective Studies
2.
Heliyon ; 10(6): e27633, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38496877

ABSTRACT

Introduction: The genetic heterogeneity of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations may affect clinical responses and outcomes to EGFR tyrosine kinase inhibitors (EGFR-TKIs). This study aims to investigate the genomic factors that influence the efficacy and clinical outcomes of first-line, second-line and third-line treatments in NSCLC and explore the heterogeneity of resistance mechanisms. Materials and methods: This real-world study comprised 65 patients with EGFR mutant NSCLC. Molecular alterations were detected using a customized DNA panel before and after administering targeted therapy. The efficacy and prognosis of each treatment line were evaluated. Results: In first-generation EGFR-TKIs treatment, gefitinib showed favorable efficacy compared to icotinib and erlotinib, particularly in patients with EGFR L858R mutations. The resistance mechanisms to first-generation EGFR-TKIs varied among different EGFR mutation cohorts and different first-generation EGFR-TKIs. In second-line EGFR-TKIs treatment, EPH receptor A3 (EPHA3), IKAROS family zinc finger 1 (IKZF1), p21 (RAC1) activated kinase 5 (PAK5), DNA polymerase epsilon, catalytic subunit (POLE), RAD21 cohesin complex component (RAD21) and RNA binding motif protein 10 (RBM10) mutations were markedly associated with poorer progression-free survival (PFS). Notably, EPHA3, IKZF1 and RBM10 were identified as independent predictors of PFS. The mechanisms of osimertinib resistance exhibited heterogeneity, with a higher proportion of non-EGFR-dependent resistant mutations. In third-line treatments, the combination of osimertinib and anlotinib demonstrated superior efficacy compared to other regimens. Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A) mutation was an independent risk indicator of shorter OS following third-line treatments. Conclusions: Comprehending the tumor evolution in NSCLC is advantageous for assessing the efficacy and prognosis at each stage of treatment, providing valuable insights to guide personalized treatment decisions for patients.

3.
Am J Cancer Res ; 14(1): 33-51, 2024.
Article in English | MEDLINE | ID: mdl-38323283

ABSTRACT

The genetic heterogeneity of non-small cell lung cancer (NSCLC) may impact clinical response and outcomes to targeted therapies. In second-line osimertinib treatment for NSCLC, real-world data on genetic biomarkers for treatment efficacy and prognosis remain incomplete. This real-world study involved 68 NSCLC patients receiving first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). All of these patients developed resistance, and 49 of them subsequently underwent second-line osimertinib treatment. A 639-gene DNA panel was employed to assess the impact of molecular alterations on treatment efficacy, clinical outcomes and resistance. The findings showed that the median progression-free survival (PFS) for second-line osimertinib therapy was 13.3 months. Genes alterations such as P21 (RAC1) activated kinase 5 (PAK5), RNA binding motif protein 10 (RBM10), and EPH receptor A3 (EPHA3) mutations were associated with significantly shorter PFS in osimertinib therapy. At multivariate analysis, they were all independent risk predictors of shorter PFS. Additionally, the median overall survival (OS) for osimertinib was 26.2 months. Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A), hepatocyte growth factor (HGF), and RBM10 mutations were significantly associated with poorer OS in osimertinib treatment. The multivariate analysis demonstrated that only RBM10 mutation emerged as an independent risk predictor of shorter OS. In vitro experiments showed that RBM10 mutations could promote the proliferation and migration ability of NSCLC cells and reduced cell apoptosis. The resistance mechanisms to osimertinib were heterogeneous. Histone cluster 1 H2B family member D (HIST1H2BD) acted as a novel resistance mechanism to osimertinib. Previously unreported HIST1H2BD mutations (p.K25Q and p.E36D) were detected in the NSCLC tissues. In vitro experiments confirmed that HIST1H2BD mutations led to resistance to osimertinib. In summary, we demonstrate that genetic biomarkers, such as PAK5, RBM10, and EPHA3, are independent predictors of PFS in second-line osimertinib treatment, with RBM10 emerging as an independent predictor of OS. Additionally, HIST1H2BD represents a novel resistance mutation to osimertinib. All of these findings offer valuable insights for making personalized treatment strategies for NSCLC patients.

4.
Drug Des Devel Ther ; 17: 1763-1782, 2023.
Article in English | MEDLINE | ID: mdl-37333964

ABSTRACT

Purpose: Gandouling Tablets (GDL), a proprietary Chinese medicine, have shown a preventive effect against Wilson's disease (WD)-induced neuronal damage in previous studies. However, the potential mechanisms need additional investigation. Combining metabonomics and network pharmacology revealed the GDL pathway against WD-induced neuronal damage. Methods: The WD rat model with a high copper load was developed, and nerve damage was assessed. Total metabonomics was used to identify distinct hippocampus metabolites and enriched metabolic pathways in MetaboAnalyst. The GDL's possible targets against WD neuron damage were then determined by network pharmacology. Cytoscape constructed compound metabonomics and pharmacology networks. Moreover, molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) validated key targets. Results: GDL reduced WD-induced neuronal injury. Twenty-nine GDL-induced metabolites may protect against WD neuron injury. According to network pharmacology, we identified three essential gene clusters, of which genes in cluster 2 had the most significant impact on the metabolic pathway. A comprehensive investigation identified six crucial targets, including UGT1A1, CYP3A4, CYP2E1, CYP1A2, PIK3CB, and LPL, and their associated core metabolites and processes. Four targets reacted strongly with GDL active components. GDL therapy improved five targets' expression. Conclusion: This collaborative effort revealed the mechanisms of GDL against WD neuron damage and a way to investigate the potential pharmacological mechanisms of other Traditional Chinese Medicine (TCM).


Subject(s)
Drugs, Chinese Herbal , Hepatolenticular Degeneration , Rats , Animals , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/metabolism , Copper/metabolism , Copper/therapeutic use , Network Pharmacology , Molecular Docking Simulation , Metabolomics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
5.
Front Oncol ; 11: 726547, 2021.
Article in English | MEDLINE | ID: mdl-34970478

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and a highly heterogeneous disease with a diversity of phenotypes and genotypes in different populations. The purpose of this study is to investigate oncogenic alterations of lung adenocarcinoma (LUAD) in eastern China and their significance in targeted therapies. METHODS: This study enrolled 101 LUAD patients and used a customized DNA panel to detect molecular alterations. Comprehensive analysis of mutations and clinical application of genomic profiling was carried out. RESULTS: The most commonly mutated genes were epidermal growth factor receptor (EGFR) (53%) and tumor protein p53 (TP53) (32%). The less frequently mutated genes were erb-b2 receptor tyrosine kinase 2 (ERBB2) (25%), ATR serine/threonine kinase (ATR) (20%), CCAAT enhancer binding protein alpha (CEBPA) (16%), RB transcriptional corepressor 1 (RB1) (16%), transcription factor 7 like 2 (TCF7L2) (14%), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) (12%) and spectrin alpha, erythrocytic 1 (SPTA1) (12%). Among them, the frequency of ERBB2, ATR, CEBPA, RB1 and TCF7L2 mutations was much higher than that in the databases. Seventy percent of the patients harbored at least one actionable alteration according to the OncoKB evidence. CEBPA mutations affected the efficacy of EGFR-tyrosine kinase inhibitors. ERBB2, CEBPA and TCF7L2 mutated tumors tend to have higher tumor mutation burden (TMB). CONCLUSIONS: LUAD patients from eastern China have a unique profile of mutations. The targeted DNA panel is helpful for personalized treatment decision of LUAD patients, and specific mutations may affect the efficacy of targeted therapies.

6.
Ann Transl Med ; 9(14): 1150, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34430591

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) patients harboring mutations in the epidermal growth factor receptor (EGFR) gene respond dramatically to EGFR tyrosine kinase inhibitors (TKIs). However, these patients inevitably develop acquired resistance to EGFR-TKIs. Among them, small cell lung cancer (SCLC) transformation is a relatively rare mechanism. METHODS: We used a 639 cancer-relevant gene panel to detect genetic differences in tissues before and after EGFR-TKIs resistance caused by SCLC transformation. In vitro experiments were conducted to study the role of ETS variant transcription factor 1 (ETV1) on SCLC transformation and EGFR-TKIs resistance. RESULTS: We present two EGFR-mutant lung adenocarcinoma (LUAD) patients. One patient, with EGFR exon 19 deletion (Ex19del), accepted first-line gefitinib treatment and then received osimertinib treatment due to acquisition of an EGFR-T790M mutation. A novel ETV1 mutation (p.P159S) was detected in the SCLC tissue after osimertinib resistance when not coexisting with T790M. The other patient harbored an EGFR exon 21 mutation (p.L858R), and had a long-lasting response to first-line gefitinib, and then transformed to SCLC after TKI resistance. A previously unreported ETV1 mutation (p.E462Q) was detected in the SCLC tissue. In vitro, ETV1 p.E462Q and p.P159S mutations participated in neuroendocrine differentiation by inducing the expression of achaete-scute homolog 1 (ASCL1) and promoting the proliferation of H69 cells. ETV1 p.E462Q and p.P159S mutations were also resistant to gefitinib and osimertinib after introduction into H358 cells. CONCLUSIONS: Novel ETV1 p.E462Q and p.P159S mutations were found in the SCLC tissues of TKIs-resistant LUAD patients, providing a new understanding of ETV1 involvement in acquired resistance to EGFR-TKIs via SCLC transformation.

7.
BMC Pregnancy Childbirth ; 21(1): 454, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34182950

ABSTRACT

BACKGROUND: Iodine plays an important role in pregnancy. How to maintain adequate iodine intake amongst pregnant women in each trimester of pregnancy to prevent adverse birth outcomes in central China is a challenge for clinical practice. METHODS: 870 pregnant women and their infants were enrolled in the study. Urinary iodine concentration (UIC) was measured using an inductively coupled plasma mass spectrometry (ICP-MS). Maternal and newborn information were obtained during follow-up. Multinomial logistic regression models were established. RESULTS: Median UIC of pregnant women was 172 ± 135 µg/L which is currently considered to be sufficient. Multivitamin supplements containing iodine, iodized salt intake and frequent milk intake were significantly associated with higher UIC. Multivariate logistic regression analysis showed that multivitamin supplements containing iodine and milk consumption were risk factors for more than adequate iodine (UIC ≥ 250 µg/L). Iodine-rich diet was significantly related to heavier birthweight, larger head circumference and longer femur length of the newborns while more than adequate iodine intake (UIC ≥ 250 µg/L) was a risk factor for macrosomia. Logistic regression models based on potential risk factors involving iodine containing supplements and iodine-rich diet were established to predict and screen pregnant women with high risk of more than adequate iodine intake among local pregnant women in different trimesters and guide them to supplement iodine reasonably to prevent the risk. CONCLUSIONS: Multivitamin supplements containing iodine and milk consumption were risk factors for maternal UIC ≥ 250 µg/L which was a risk factor for macrosomia. Iodine monitoring models were established to provide guidance for pregnant women to reduce the risk of more than adequate iodine intake, thereby contributing to reduce the risk of having a macrosomia.


Subject(s)
Iodine/adverse effects , Models, Theoretical , Nutrition Assessment , Pregnancy Complications/prevention & control , Prenatal Care/methods , Adult , Animals , China , Diet/adverse effects , Diet/methods , Diet Surveys , Dietary Supplements/adverse effects , Dietary Supplements/analysis , Eating , Female , Fetal Macrosomia/etiology , Fetal Macrosomia/prevention & control , Humans , Infant, Newborn , Iodine/analysis , Iodine/urine , Logistic Models , Milk/adverse effects , Nutritional Status , Pregnancy , Pregnancy Complications/etiology , Pregnancy Complications/urine , Pregnancy Trimesters/urine , Risk Factors , Sodium Chloride, Dietary/adverse effects
8.
Open Life Sci ; 16(1): 150-159, 2021.
Article in English | MEDLINE | ID: mdl-33817307

ABSTRACT

The purpose of this study was to assess the relationship between 25-hydroxyvitamin D (25(OH)D), urinary iodine concentration (UIC), and type 2 diabetes mellitus (T2DM) risk and complications and to establish a model to predict T2DM in the general population. A total of 567 adults (389 T2DM patients and 178 controls) were enrolled, and the levels of 25(OH)D, iodine, and blood biochemical parameters were measured. Pearson's correlation analysis showed an inverse correlation between 25(OH)D level, UIC, and T2DM risk. Low 25(OH)D level was a risk factor for developing T2DM (OR, 0.81; 95% CI, 1.90-2.63; P = 0.043) after adjustment for multiple risk factors. 25(OH)D level and UIC were inversely correlated with short-term and long-term glucose levels. 25(OH)D deficiency was also associated with a high incidence of T2DM complicated with thyroid dysfunction. A prediction model based on 25(OH)D, iodine status, and other risk factors was established and recommended to screen high-risk T2DM in the general population and provide early screening and timely treatment for them.

9.
Lipids Health Dis ; 19(1): 177, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32723324

ABSTRACT

BACKGROUND: Intima-media thickness (IMT) and small dense low-density lipoprotein cholesterol (sdLDL-C) have been reported to be related to atherosclerosis and stroke. This study is trying to explore the association between IMT and sdLDL-C in Chinese acute ischaemic stroke (AIS) subjects. METHODS: This study enrolled total 368 consecutive AIS patients and 165 non-AIS controls from November 2016 to February 2019. Mean IMT and carotid plaques were measured by using carotid ultrasonography method. Blood glucose and lipid parameters were measured by using an automatic biochemical instrument. SdLDL-C was detected by using the Lipoprint LDL system. IMT > 1.0 mm was defined as increased IMT. Plaque stability based on the nature of the echo was determined by ultrasound examination. Risk factors for IMT were identified by using multivariate logistic regression analysis. A logistic regression model was established to predict AIS risk. Python software (Version 3.6) was used for the statistical analysis of all data. RESULTS: The carotid IMT, proportion of plaques, and the sdLDL-C, triglycerides (TG) and glucose levels were obviously higher in AIS patients than those in controls. SdLDL-C level in the IMT thickening group was higher than that in the normal IMT group. SdLDL-C and total cholesterol (TC) were risk factors for IMT, while sdLDL-C was an independent risk factor. The IMT value of the unstable plaque group was markedly higher than that of the stable plaque group. The predictive value of IMT for AIS was better than that of low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol (non-HDL-C) but not as good as that of sdLDL-C. A logistic regression model was established to predict AIS risk. Additionally, carotid IMT and sdLDL-C were closely related to AIS severity and outcomes. CONCLUSIONS: SdLDL-C and TC were risk factors for increased IMT, while sdLDL-C was an independent risk factor. A prediction model based on IMT and other variables was established to screen the population with high AIS risk.


Subject(s)
Brain Ischemia/blood , Carotid Intima-Media Thickness , Cholesterol, LDL/blood , Adult , Carotid Arteries/pathology , Female , Humans , Ischemic Stroke/blood , Logistic Models , Male , Middle Aged , Plaque, Atherosclerotic/blood , Prognosis , Retrospective Studies , Risk Factors , Triglycerides/blood
10.
J Cancer Res Clin Oncol ; 146(9): 2277-2287, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32572558

ABSTRACT

PURPOSE: NSCLC is the most common type of lung cancers. The purpose of this study is to screen cancer-related mutations in early LUAD in China through NGS technology, determine their correlation with clinical characteristics and provide basis for treatment decisions. METHODS: In this study, we performed a 583 gene panel to detect the mutational spectrum of the tumors which were collected from 98 LUAD patients. The sequencing data and clinical characteristics were analyzed. RESULTS: Mutations were identified in 94.9% of patients. EGFR had the highest mutation frequency which was detected in 66% of the patients and was significantly associated with female gender and non-smoking history. Other genes with high mutation frequency were TP53 (37%), ERBB2 (24%), BCOR (22%), ZFHX3 (19%), BTG1 (17%), ATR (16%), WWTR1 (15%), etc. TP53 mutations were significantly associated with medium and low differentiation of tumors; BCOR and BLM mutations with gender; WWTR1 mutations with age; and ATR mutations with visceral pleura invasion were observed. 61% of the patients harbored at less one actionable alteration associated with FDA-recognized or investigational drugs. CONCLUSION: Multiple mutations in LUAD patients in this study have not previously been reported in NSCLC. Moreover, mutations in driver genes including EGFR, TP53, BCOR, BLM, WWTR1, and ATR were significantly related to clinical features. The panel used in this study is an effective approach for molecular analysis and can be applied in personalized treatment decision-making and drug development.


Subject(s)
Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Mutation/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Differentiation/genetics , China , ErbB Receptors/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged
11.
J Clin Lab Anal ; 34(9): e23376, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32537819

ABSTRACT

BACKGROUND: The prevalence of vitamin D deficiency and insufficiency is extremely high in pregnant women worldwide. However, the association between single nucleotide polymorphisms (SNPs) in vitamin D metabolic pathway genes and 25-hydroxyvitamin D (25(OH)D) concentration among Chinese pregnant women is seldom reported. The risk of adverse neonatal outcomes due to maternal vitamin D deficiency has not been well investigated. METHODS: A total of 815 pregnant women and 407 infants were enrolled in this study. Serum 25(OH)D concentration was detected. DNA was extracted from the maternal blood for genotyping genetic SNPs in vitamin D pathway. An XGBoost model was established based on SNPs combined with external variables. RESULTS: Mean serum 25(OH)D level was 15.67 ± 7.98 ng/mL among the pregnant women. Seventy-five percent of pregnant women had 25(OH)D deficiency in China. SNPs of GC (rs17467825, rs4588, rs2282679, rs2298850, and rs1155563) were significantly associated with maternal 25(OH)D concentration. The influence of variants of rs17467825, rs4588, rs2282679, and rs2298850 on maternal 25(OH)D might be modified by vitamin D supplementation and sunshine exposure. An XGBoost model was established for monitoring 25(OH)D status in pregnant women and provided clinical advice to reduce the risk of 25(OH)D deficiency. Mothers with 25(OH)D deficiency hinted a risk for macrosomia. CONCLUSION: A high prevalence of vitamin D deficiency in China has been confirmed. A clinical model was established to guide pregnant women to supplement vitamin D according to genotype. Furthermore, we suggest the effect of maternal vitamin D status on the risk of macrosomia.


Subject(s)
Pregnancy Complications , Vitamin D Deficiency , Vitamin D-Binding Protein/genetics , Adult , China , Dietary Supplements , Female , Humans , Infant , Polymorphism, Single Nucleotide/genetics , Pregnancy , Pregnancy Complications/epidemiology , Pregnancy Complications/genetics , Vitamin D , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/genetics , Young Adult
12.
J Atheroscler Thromb ; 27(12): 1310-1324, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32062644

ABSTRACT

AIM: To investigate the association of small dense low-density lipoprotein cholesterol (sdLDL-C) and acute ischemic stroke (AIS) in terms of risk, severity, and outcomes. Prediction models were established to screen high-risk patients and predict prognosis of AIS patients. METHODS: We enrolled in this study 355 AIS patients and 171 non-AIS controls. AIS was subtyped according to TOAST criteria, and the severity and outcomes of AIS were measured. Blood glucose and lipid profiles including total cholesterol, triglyceride, and lipoproteins were measured in all patients using automatic measure. Lipoprotein subfractions were detected by the Lipoprint LDL system. RESULTS: As compared with the non-AIS control group, the AIS group had higher sdLDL-C levels. Pearson correlation analysis revealed that the sdLDL-C level and risk of AIS, especially non-cardioembolic stroke, were positively correlated. The area under the curve of sdLDL-C for AIS risk was 0.665, better than that of other lipids. Additionally, the sdLDL-C level was significantly correlated with AIS severity and bad outcomes. A logistic regression model for assessing the probability of AIS occurrence and a prognostic prediction model were established based on sdLDL-C and other variables. CONCLUSIONS: Elevated levels of sdLDL-C were associated with a higher prevalence of AIS, especially in non-cardioembolic stroke subtypes. After adjustment for other risk factors, sdLDL-C was found to be an independent risk factor for AIS. Also, sdLDL-C level was strongly associated with AIS severity and poor functional outcomes. Logistic regression models for AIS risk and prognosis prediction were established to help clinicians provide better prevention for high-risk subjects and monitor their prognosis.


Subject(s)
Cholesterol, LDL/blood , Ischemic Stroke/blood , Aged , Female , Follow-Up Studies , Humans , Ischemic Stroke/diagnosis , Logistic Models , Male , Middle Aged , Prognosis , Risk Factors
13.
J Endocrinol ; 243(2): 111-123, 2019 11.
Article in English | MEDLINE | ID: mdl-31454789

ABSTRACT

Obesity and type 2 diabetes (T2D) are both complicated endocrine disorders resulting from an interaction between multiple predisposing genes and environmental triggers, while diet and exercise have key influence on metabolic disorders. Previous reports demonstrated that 2-aminoadipic acid (2-AAA), an intermediate metabolite of lysine metabolism, could modulate insulin secretion and predict T2D, suggesting the role of 2-AAA in glycolipid metabolism. Here, we showed that treatment of diet-induced obesity (DIO) mice with 2-AAA significantly reduced body weight, decreased fat accumulation and lowered fasting glucose. Furthermore, Dhtkd1-/- mice, in which the substrate of DHTKD1 2-AAA increased to a significant high level, were resistant to DIO and obesity-related insulin resistance. Further study showed that 2-AAA induced higher energy expenditure due to increased adipocyte thermogenesis via upregulating PGC1α and UCP1 mediated by ß3AR activation, and stimulated lipolysis depending on enhanced expression of hormone-sensitive lipase (HSL) through activating ß3AR signaling. Moreover, 2-AAA could alleviate the diabetic symptoms of db/db mice. Our data showed that 2-AAA played an important role in regulating glycolipid metabolism independent of diet and exercise, implying that improving the level of 2-AAA in vivo could be developed as a strategy in the treatment of obesity or diabetes.


Subject(s)
2-Aminoadipic Acid/pharmacology , Body Weight/drug effects , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , 2-Aminoadipic Acid/metabolism , 3T3-L1 Cells , Adipose Tissue/cytology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/physiopathology , Diet, High-Fat/adverse effects , Ketone Oxidoreductases/genetics , Ketone Oxidoreductases/metabolism , Lipid Metabolism/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/physiopathology , Protective Agents/pharmacology , Receptors, Adrenergic, beta-3/metabolism , Signal Transduction/drug effects , Thermogenesis/drug effects
14.
Mol Cell Biol ; 38(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29661920

ABSTRACT

DHTKD1, a part of 2-ketoadipic acid dehydrogenase complex, is involved in lysine and tryptophan catabolism. Mutations in DHTKD1 block the metabolic pathway and cause 2-aminoadipic and 2-oxoadipic aciduria (AMOXAD), an autosomal recessive inborn metabolic disorder. In addition, a nonsense mutation in DHTKD1 that we identified previously causes Charcot-Marie-Tooth disease (CMT) type 2Q, one of the most common inherited neurological disorders affecting the peripheral nerves in the musculature. However, the comprehensive molecular mechanism underlying CMT2Q remains elusive. Here, we show that Dhtkd1-/- mice mimic the major aspects of CMT2 phenotypes, characterized by progressive weakness and atrophy in the distal parts of limbs with motor and sensory dysfunctions, which are accompanied with decreased nerve conduction velocity. Moreover, DHTKD1 deficiency causes severe metabolic abnormalities and dramatically increased levels of 2-ketoadipic acid (2-KAA) and 2-aminoadipic acid (2-AAA) in urine. Further studies revealed that both 2-KAA and 2-AAA could stimulate insulin biosynthesis and secretion. Subsequently, elevated insulin regulates myelin protein zero (Mpz) transcription in Schwann cells via upregulating the expression of early growth response 2 (Egr2), leading to myelin structure damage and axonal degeneration. Finally, 2-AAA-fed mice do reproduce phenotypes similar to CMT2Q phenotypes. In conclusion, we have demonstrated that loss of DHTKD1 causes CMT2Q-like phenotypes through dysregulation of Mpz mRNA and protein zero (P0) which are closely associated with elevated DHTKD1 substrate and insulin levels. These findings further indicate an important role of metabolic disorders in addition to mitochondrial insufficiency in the pathogenesis of peripheral neuropathies.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Ketone Oxidoreductases/deficiency , Ketone Oxidoreductases/genetics , 2-Aminoadipic Acid/metabolism , Adipates/metabolism , Animals , Charcot-Marie-Tooth Disease/physiopathology , Codon, Nonsense , Disease Models, Animal , Early Growth Response Protein 2/metabolism , Humans , Insulin/metabolism , Ketoglutarate Dehydrogenase Complex , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin P0 Protein/metabolism , Myelin Sheath/metabolism , Myelin Sheath/pathology , Neural Conduction , Phenotype , Sciatic Nerve/metabolism , Sciatic Nerve/pathology
15.
J Exp Clin Cancer Res ; 36(1): 2, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28057020

ABSTRACT

BACKGROUND: Retinoic acid-inducible gene-I (Rig-I) is an intracellular viral RNA receptor, which specifically recognizes double-stranded viral RNA initiating antiviral innate immunity. Increasing evidences showed that Rig-I had broader roles in antibacterial immunity and cancer protection. However, the potential roles and mechanisms of Rig-I in gut flora regulation and colorectal cancer (CRC) progression remain unclear. METHODS: Immunohistochemistry was performed to detect Rig-I protein in 38 pairs of CRC tissue and matched adjacent mucosa, and immunofluorescence and western blot were also used to detect Rig-I protein expression in AOM/DSS-induced mice CRC samples. High-throughput sequencing was conducted to evaluate gut microbiota changes in Rig-I-deficient mice. Immunofluorescence and flow cytometry were used to detect IgA expression. Additionally, real-time quantitative PCR was performed to detect RNA expression in mouse intestines and cultured cells, and western blot was used to detect phosphorylation of STAT3 in IL-6-stimulated B cell line. RESULTS: Rig-I was downregulated in human and mouse CRC samples and Rig-I-deficient mice were more susceptible to AOM/DSS-induced colitis-associated colorectal cancer (CAC). Furthermore, Rig-I-deficient mice displayed gut microbiota disturbance compared to wild type mice. IgA, Reg3γ and Pdcd1 levels were decreased in intestines of Rig-I-deficient mice. Phosphorylation of STAT3 in IL-6-stimulated 1B4B6 was decreased. CONCLUSION: Rig-I could regulate gut microbiota through regulating IgA and IL6-STAT3-dependent Reg3γ expression. Besides, Rig-I could inhibit CRC progression.


Subject(s)
Bacteria/classification , Colitis/microbiology , Colorectal Neoplasms/metabolism , Down-Regulation , Membrane Proteins/deficiency , Nerve Tissue Proteins/deficiency , Receptors, Retinoic Acid/metabolism , Animals , Azoxymethane/adverse effects , Bacteria/genetics , Bacteria/isolation & purification , Colitis/chemically induced , Colitis/complications , Colitis/metabolism , Colorectal Neoplasms/etiology , DNA, Bacterial/analysis , Dextran Sulfate/adverse effects , Disease Models, Animal , Gastrointestinal Microbiome , Humans , Immunoglobulin A/metabolism , Interleukin-6/metabolism , Mice , Pancreatitis-Associated Proteins/metabolism , Phosphorylation , Phylogeny , Receptors, Cell Surface , STAT3 Transcription Factor/metabolism , Sequence Analysis, DNA
16.
Am J Hum Genet ; 91(6): 1088-94, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23141294

ABSTRACT

Charcot-Marie-Tooth (CMT) disease represents a clinically and genetically heterogeneous group of inherited neuropathies. Here, we report a five-generation family of eight affected individuals with CMT disease type 2, CMT2. Genome-wide linkage analysis showed that the disease phenotype is closely linked to chromosomal region 10p13-14, which spans 5.41 Mb between D10S585 and D10S1477. DNA-sequencing analysis revealed a nonsense mutation, c.1455T>G (p.Tyr485(∗)), in exon 8 of dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1) in all eight affected individuals, but not in other unaffected individuals in this family or in 250 unrelated normal persons. DHTKD1 mRNA expression levels in peripheral blood of affected persons were observed to be half of those in unaffected individuals. In vitro studies have shown that, compared to wild-type mRNA and DHTKD1, mutant mRNA and truncated DHTKD1 are significantly decreased by rapid mRNA decay in transfected cells. Inhibition of nonsense-mediated mRNA decay by UPF1 silencing effectively rescued the decreased levels of mutant mRNA and protein. More importantly, DHTKD1 silencing was found to lead to impaired energy production, evidenced by decreased ATP, total NAD(+) and NADH, and NADH levels. In conclusion, our data demonstrate that the heterozygous nonsense mutation in DHTKD1 is one of CMT2-causative genetic alterations, implicating an important role for DHTKD1 in mitochondrial energy production and neurological development.


Subject(s)
Asian People/genetics , Charcot-Marie-Tooth Disease/genetics , Codon, Nonsense , Ketone Oxidoreductases/genetics , Amino Acid Sequence , Base Sequence , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/metabolism , China , Exons , Female , Gene Order , Humans , Ketoglutarate Dehydrogenase Complex , Male , Mitochondria, Muscle/genetics , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Models, Molecular , Molecular Sequence Data , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Nonsense Mediated mRNA Decay , Pedigree
17.
Yi Chuan ; 34(8): 935-42, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-22917898

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a widespread quality control mechanism in eukaryotic cells. It can recognize and degrade aberrant transcripts harbouring a premature translational termination codon (PTC), and thereby prevent the production of C-terminally truncated proteins which might be deleterious. Approximately, 30% of human genetic diseases are caused by transcripts containing PTCs. These transcripts are potential targets of NMD. As for monogenic diseases, NMD has effects on the phenotype or mode of inheritance. Here, we explain the mechanism of this surveillance pathway, and take several neuromuscular disorders as examples to discuss its influence for human monogenic diseases. The deeper understanding for NMD will shed light on the nosogenesis and therapies of monogenic diseases.


Subject(s)
Codon, Nonsense/genetics , Codon, Nonsense/metabolism , Genetic Diseases, Inborn/genetics , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Genetic Diseases, Inborn/metabolism , Humans
18.
Zhongguo Gu Shang ; 21(11): 839-41, 2008 Nov.
Article in Chinese | MEDLINE | ID: mdl-19143247

ABSTRACT

OBJECTIVE: To study the potentiality of osteanagenesis of the hematomas formed around the fractures and that of the marrow stroma cells, evaluate the effect of the combined trans-plantation of the hematoma and the marrow stroma cells, to explore a new method to accelerate the union of fracture. METHODS: The bone defect models were made on the tibias of the New-Zealand's rabbits. The hematomas formed around the fracture were taken out 3 days latter after the operation, the marrow stroma cells were abstracted from the femoral marrow simultaneously. And then the mixture of the hematoma and the marrow stroma cells were transplanted to the defects of the tibias in the experiment group, and the hematoma transplanted simply to the same place in the control group. The radio-graph and the histological observation of the osteotylus were carried out regularly post-operation. RESULTS: 1) There was a significant difference in osteotylus quantity between the two groups: more osteotylus and obvious periosteal proliferation were found in the experiment group than that in the control group which accepted the transplantation of the hematomas alone. 2) There was a significant difference in osteoblast number between the two groups: more sclerotomal-like cells were observed under the microscope in the experiment group than that in the control group. CONCLUSION: Marrow stroma cells have great potentiality of osteoanagenesis. The result of combined transplantation of the marrow stroma cells and the hematomas is more effective than that of simple transplantation of the bone hematoma.


Subject(s)
Blood Cells/transplantation , Bone Marrow Transplantation , Fracture Healing , Hematoma/surgery , Stromal Cells/transplantation , Tibial Fractures/therapy , Animals , Female , Humans , Male , Mesenchymal Stem Cell Transplantation , Rabbits , Random Allocation , Tibia/injuries , Tibia/physiopathology , Tibia/surgery , Tibial Fractures/physiopathology , Tibial Fractures/surgery , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...